IT ALL STARTS WITH AN IDEA...

The idea to make devices faster, sleeker, more compact and powerful, yet the challenge is to do so without over-heating.

Laird Technologies’ thermally conductive gap fillers are compliant, future-generation cooling materials. We offer the softest, highest thermally conductive gap fillers available (in thicknesses from 0.2mm to 5.08mm).

These gap filler products afford designers and engineers the most flexibility in dimensional tolerances. Extreme compliancy reduces stress on components, while higher thermal conductivity provides the required thermal performance for next-generation designs.

Thermal performance and softness is what Laird Technologies does best. Call us today to discuss your application and order free samples.

Laird Technologies’ gap fillers - experience the cooler side of soft.

FEATURES AND BENEFITS

- Compliancy rates up to 50% deflection at 50 psi
- Thermal conductivity range from 1.1 – 6.0 W/mK
- Thicknesses from 0.2mm to 5.08mm

APPLICATIONS

- Notebook computers
- Handheld microprocessor devices
- Telecommunication hardware
- Semiconductor test equipment
- Servers and desktop computers
- Memory modules
- Mass storage devices
- Power conversion equipment
- Flat panel displays
- Audio & video components
- GPS navigation equipment
- Automotive engine control
- LED lighting
- Household appliances
- Lighting ballasts

global solutions: local support

Americas: +1.800.843.4556
Europe: +49.8031.2460.0
Asia: +86.755.2714.1166

CLV-customerservice@lairdtech.com
www.lairdtech.com/thermal
Gap Filler Product Line

Innovative Technology for a Connected World

<table>
<thead>
<tr>
<th>Test Method</th>
<th>TFLEX™ 200V</th>
<th>TFLEX™ 300</th>
<th>TFLEX™ 500</th>
<th>TFLEX™ HR600 PRELIMINARY</th>
<th>TFLEX™ 600</th>
<th>TFLEX™ 700 PRELIMINARY</th>
<th>TRPUTTY™ 502</th>
<th>TPUTTY™ 504</th>
<th>TPLEx™ 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction & Composition</td>
<td>Ceramic filled silicone sheet</td>
<td>Ceramic filled silicone sheet</td>
<td>Ceramic filled silicone sheet</td>
<td>Ceramic filled silicone sheet</td>
<td>Boron nitride filled silicone sheet</td>
<td>Ceramic filled silicone sheet</td>
<td>Reinforced boron nitride filled silicone sheet</td>
<td>Ceramic filled dispensable gel</td>
<td>Boron nitride filled silicone sheet</td>
</tr>
<tr>
<td>Color</td>
<td>Light Gray</td>
<td>Light Green</td>
<td>Blue</td>
<td>Grey</td>
<td>Blue-Violet</td>
<td>Dark Grey</td>
<td>White</td>
<td>Light Gray</td>
<td>Multiple Colors</td>
</tr>
<tr>
<td>Thickness Range</td>
<td>0.008” (0.20mm) - 0.200” (5.08mm)</td>
<td>0.020” (0.50mm) - 0.200” (5.08mm)</td>
<td>N/A</td>
<td>0.010” (0.25mm) - 0.200” (5.08mm)</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>1.1 W/mK</td>
<td>1.2 W/mK</td>
<td>2.7 W/mK</td>
<td>3.0 W/mK</td>
<td>3.0 W/mK</td>
<td>5.0 W/mK</td>
<td>3.0 W/mK</td>
<td>1.8 W/mK</td>
<td>6.0 W/mK</td>
</tr>
<tr>
<td>Density</td>
<td>1.57 °C-in²/W</td>
<td>1.15 °C-in²/W</td>
<td>7.42°C-cm²/W</td>
<td>0.50 °C-in²/W</td>
<td>3.23°C-cm²/W</td>
<td>0.35 °C-in²/W</td>
<td>2.26°C-cm²/W</td>
<td>0.62 °C-in²/W</td>
<td>4.00°C-cm²/W</td>
</tr>
<tr>
<td>Percent Deflection @ 10 psi</td>
<td>5%</td>
<td>21%</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>15%</td>
<td>25%</td>
<td>N/A</td>
<td>4%</td>
</tr>
<tr>
<td>Percent Deflection @ 50 psi</td>
<td>25%</td>
<td>48%</td>
<td>30%</td>
<td>42%</td>
<td>40%</td>
<td>32%</td>
<td>50%</td>
<td>N/A</td>
<td>6%</td>
</tr>
<tr>
<td>Percent Deflection @ 100 psi</td>
<td>40%</td>
<td>61%</td>
<td>45%</td>
<td>58%</td>
<td>60%</td>
<td>50%</td>
<td>75%</td>
<td>N/A</td>
<td>10%</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>229 ppm/°C</td>
<td>754 ppm/°C</td>
<td>37.4 ppm/°C</td>
<td>217 ppm/°C</td>
<td>430 ppm/°C</td>
<td>340 ppm/°C</td>
<td>92 ppm/°C</td>
<td>N/A</td>
<td>51 ppm/°C</td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>>250 VAC/mil</td>
<td>>250 VAC/mil</td>
<td>>200 VAC/mil</td>
<td>Pending</td>
<td>>200 VAC/mil</td>
<td>>200 VAC/mil</td>
<td>>200 VAC/mil</td>
<td>>500 VAC/mil</td>
<td>>150 VAC/mil</td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>4 x 10¹ ohm-cm</td>
<td>6 x 10¹ ohm-cm</td>
<td>1x 10¹ ohm-cm</td>
<td>9 x 10¹ ohm-cm</td>
<td>2 x 10¹ ohm-cm</td>
<td>1x 10¹ ohm-cm</td>
<td>5 x 10¹ ohm-cm</td>
<td>>10⁵ ohm-cm</td>
<td>5 x 10¹ ohm-cm</td>
</tr>
<tr>
<td>Dielectric Constant @ 1MHz</td>
<td>5.5</td>
<td>5.5</td>
<td>13.6</td>
<td>17.6</td>
<td>3.3</td>
<td>5</td>
<td>3.2</td>
<td>N/A</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Data for design engineer guidance only. Observed performance varies in application. Engineers are reminded to test the material in application.

Any information furnished by Laird Technologies, Inc. and its agents is believed to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Technologies' materials rests with the end user, since Laird Technologies and its agents cannot be aware of all potential uses, Laird Technologies makes no warranties as to the fitness, merchantability or suitability of any Laird Technologies materials or products for any specific or general uses. Laird Technologies shall not liable for incidental or consequential damages of any kind. All Laird Technologies products are sold pursuant to the Laird Technologies' Terms and Conditions of sale in effect from time to time, a copy of which will be furnished upon request. © Copyright 2010 Laird Technologies, Inc. All Rights Reserved. Laird, Laird Technologies, the Laird Technologies Logo, and other marks are trade marks or registered trade marks of Laird Technologies, Inc. or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird Technologies or any third party intellectual property rights. A15561-00 Rev A, 2/05/07

Note:
- The data provided is subject to change without notice.
- Responsibility for the use and application of Laird Technologies' materials rests with the end user.
- Observed performance may vary in application.
- Engineers are reminded to test the material in application.